CPU Scheduling, Continued

Priority
- One queue per priority level with FCFS used at each level.
- Different algorithms can be used at different levels.
- Very common.

Round Robin
- A process runs for a Quantum=a fixed time unit. If the burst is consumed, the process is done. Otherwise it is forced back into the ready queue.

Multilevel Queues
- Processes are classified by type, and prioritized by type.

Multilevel Feedback Queues.
- Same as above, but processes can change type dynamically. Usually based on resource usage.

Shortest Remaining Time First
- When we have different arrival times, and we’re doing SJF, do we reschedule the current process when a new process arrives, or do we continue with the current process.

Multiprocessor Scheduling
- Surprisingly simple.

Threading

Threads are “cheap processes” almost always share memory with other threads.

There are Kernel Threads and User Threads.

Kernel Threads – Created and managed by OS.

User Threads – Created and managed by user – usually with a threading package.

Threading models
- Many-to-One All threading Package
- One-to-One All OS
- Many-to-Many Mixed

Pthreads
- This is the best on-line resource for pthreads information
Creating threads:
 pthread_create (thread, attr, start_routine, arg)
 pthread_exit (status)

 pthread_attr_init (attr)
 pthread_attr_destroy (attr)

 pthread_join();

Mutex Variables
 pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;

 pthread_mutex_init (mutex, attr)
 pthread_mutex_destroy (mutex)
 pthread_mutexattr_init (attr)
 pthread_mutexattr_destroy (attr)

 pthread_mutex_lock (mutex)
 pthread_mutex_trylock (mutex)
 pthread_mutex_unlock (mutex)

Condition Variables
 pthread_cond_t myconvar = PTHREAD_COND_INITIALIZER;

 pthread_cond_init (condition, attr)
 pthread_cond_destroy (condition)
 pthread_condattr_init (attr)
 pthread_condattr_destroy (attr)

 pthread_cond_wait (condition, mutex)
 pthread_cond_signal (condition)