1. Graphs
 a. Terminology
 Define: Vertex, Node, Edge, Arc, Path, Adjacent, Simple Path, Cycle, Simple Cycle,
 b. Relations
 Show the graph of the following relationship: (a,b), (b,c), (b,d), (b,e), (c,f), (c,g),
 (e,h).
 c. Euler Paths
 Draw a graph that has an Euler cycle.
 Draw a graph that has an Euler path.
 Draw a graph that has neither.
 d. Advanced
 What is an articulation point?
 What is a biconnected graph?
 What does it mean to say that two graphs are isomorphic?
 What is a planar graph?
 What is the graph coloring problem?
 Know how to find a shortest path?
2. Counting
 a. Multiplication principles.
 I have three urns with numbered balls in them. The first has three red balls, the
 second has four green balls, and the third has two white balls. How many ways
 are there to choose one white ball, one red ball and one green ball?
 b. Unions and Intersections
3. Permutations and Combinations
 a. Binomial theorem
 in \((x + 1)^{20}\), what is the coefficient of \(x^{18}\) ?
 b. Algorithms
 What is the next permutation after 54123?
 Five things taken three at a time, what is the next combination after 135?
4. Probability
 a. Equally likely events
 Suppose I roll two dice and flip two coins. What are the equally likely outcomes
 of this experiment?
 b. Adding disjoint sets
 If we choose a number \(n\) from 1 through 100, what is the probability that
 \(n \equiv 0 \mod 5\)? What is the probability that \(n \equiv 2\) or \(3 \mod 5\)?
 c. Adding non-disjoint sets
 If we choose a number \(n\) from 1 through 100, what is the probability that \(n\) is
 divisible by 5? What is the probability that \(n\) is divisible by 2? What is the
 probability that \(n\) is divisible by 5 or by 2?
5. Prove that:
\[
\sum_{i=1}^{n} (4i + 7) = 2n^2 + 9n
\]
6. Prove that:
\[\sum_{i=0}^{n} 5^i = \frac{5^{n+1}-1}{4} \]

7. Multiply the following:
\[
\begin{pmatrix}
1 & 2 & 1 \\
2 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
2 & 0 \\
1 & 2
\end{pmatrix}
\]

8. Multiply the following:
\[
\begin{pmatrix}
0 & 2 & 3 \\
3 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 2
\end{pmatrix}
\]

9. Combine the following:
\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 5 & 6 & 1 & 2 & 3
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 2 & 1 & 6 & 5 & 4
\end{pmatrix}
\]

10. How fast are the following algorithms?
 BubbleSort, Quicksort, Mergesort, Repeated Minimum sort, Insertion sort.

 11101011101001 1001011101110 101010011 1000000100001

12. Give addition and multiplication tables for Modulo 5 arithmetic.

13. Which of the following are propositions.
 a. Eat at Joe’s!
 b. Make me smile.
 c. I’m in love with a big blue frog.
 d. If cows were green then you couldn’t see them in the grass.
 e. Did you eat yet?
 f. Money is the root of all evil.

14. Which of the following are true?
 a. If cows are green then pigs can fly.
 b. If x>7 then x+5>12
c. If 3 is a prime number then 10 is odd.
d. If I won the lottery then I will go to Paris.
e. If 9 is a prime number then 10 is bigger than 100.

15. Given \(U = \{1,2,3,4,5,6,7,8,9,10\}, \ A = \{1,2,3\}, \ B = \{4,5,6\}, \ C = \{6,7,8\} \) give the following.
 a. \(A \cap B \)
 b. \(A \cup B \)
 c. \(B \cap C \)
 d. \(\overline{A} \)
 e. \(B - C \)

16. State and prove De Morgan’s laws for sets.

17. Give the commutative, associative, and distributive laws for Boolean Algebra.

18. Give the identity and complement laws for Boolean Algebra.

19. What is an equivalence relation?

20. What is a partial order?

21. Negate
 a. \((\forall x)x > 7 \)
 b. \((\forall x)x < x + 1 \)
 c. \((\exists x)x < 3 \land x > 7 \)

22. Prove that \((x+1)^3 = x^3 + 3x^2 + 3x + 1 \)

23. Find the minimal Boolean Equations for the following truth tables.

<table>
<thead>
<tr>
<th>ABCD</th>
<th>F</th>
<th>ABCD</th>
<th>F</th>
<th>ABC</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>000</td>
<td>1</td>
</tr>
<tr>
<td>0001</td>
<td>0</td>
<td>1001</td>
<td>0</td>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>0</td>
<td>1010</td>
<td>0</td>
<td>010</td>
<td>1</td>
</tr>
<tr>
<td>0011</td>
<td>0</td>
<td>1011</td>
<td>1</td>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td>1100</td>
<td>0</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>0101</td>
<td>1</td>
<td>1101</td>
<td>1</td>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>0110</td>
<td>0</td>
<td>1110</td>
<td>0</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>0111</td>
<td>1</td>
<td>1111</td>
<td>1</td>
<td>111</td>
<td>0</td>
</tr>
</tbody>
</table>